Assignment 1.

Basic techniques.

This assignment is due Wednesday, Jan 27. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

- (1) Represent the following complex numbers in trigonometric form: (a) 1+i, (b) -1+i, (c) -1-i, (d) $1+i\sqrt{3}$, (e) $-1+i\sqrt{3}$, (f) $\sqrt{3}-i$.
- (2) Calculate (a) $\frac{1+i\tan\alpha}{1-i\tan\alpha}$ (where $\alpha \in \mathbb{R}$), (b) $\frac{(1+i)^{2015}}{(1-i)^{2013}}$.
- (3) Calculate
 - (a) $(a + b\omega + c\omega^2)(a + b\omega^2 + c\omega)$, (b) $(a + b)(a + b\omega)(a + b\omega^2)$, where $\omega = -\frac{1}{2} + \frac{1}{2}\sqrt{3} \cdot i$. (Hint: use that $\omega^3 = 1$.)
- (4) Prove the identity $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$. (By the way, what is the geometric interpretation of this identity?)
- (5) By a purely geometric argument, prove that

$$|z-1| \le ||z|-1| + |z|| \arg z|$$

(*Hint:* Draw a picture. The latter term is the length of an arc.)

- (6) Draw regions on the complex z-plane defined by the following relations: (a) $|z - z_1| = |z - z_2|$ (c) Re $z + \operatorname{Im} z < 1$ (e) Re $\frac{z - z_1}{z - z_2} = 0$ (b) $0 \leq \operatorname{Re}(iz) \leq 1$ (d) Im $\frac{z - z_1}{z - z_2} = 0$
- (7) Prove that any complex number of absolute value 1 (except for z = -1) can be represented as

$$z = \frac{1+it}{1-it},$$

where t is a real number (Hint: compare to 2a.)

- (8) $Az\overline{z} E\overline{z} \overline{E}z + D = 0$ is an equation of a circle $(E \in \mathbb{C}, A, D \in \mathbb{R}, A \neq 0)$. Find its center and radius.
- (9) Describe the family of curves on the complex z-plane with equations
 (a) Re ¹/_z = C,
 (b) Im ¹/_z = C,
 where C is an arbitrary real number. (*Hint:* Use 1/z = z/zz, Re w = (w + w)/2, complex equation of a circle and problem 8 above.)
- (10) Use the fact that $1 + \cos \alpha + \cos 2\alpha + \dots + \cos n\alpha = \operatorname{Re} (1 + z + z^2 + \dots + z^n)$, where $z = \cos \alpha + i \sin \alpha$, to find a trigonometric expression for $1 + \cos \alpha + \cos 2\alpha + \dots + \cos n\alpha$.
- (11) Use De Moivre's formula $((\cos \varphi + i \sin \varphi)^n = \cos n\varphi + i \sin n\varphi)$ to express $\cos 5\varphi$ through $\sin \varphi$ and $\cos \varphi$.

COMMENT. If you look at your obtained expression closely, you can observe that you can eliminate $\sin \varphi$ by using $\cos^2 \varphi + \sin^2 \varphi = 1$, so $\cos 5\varphi$ is a *polynomial* of $\cos \varphi$. The same is true for $\cos n\varphi$. The corresponding polynomials are called *Chebyshev* polynomials and they are amazing every which way.